Search Space Contraction in Canonical Labeling of Graphs (Preliminary Version)
نویسنده
چکیده
The individualization-refinement paradigm for computing a canonical labeling and/or the automorphism group of a graph is investigated. New techniques are introduced with the aim of reducing the size of the associated search space. In particular, a new partition refinement algorithm is proposed, together with graph invariants having a global nature. Experimental results and comparisons with existing tools, such as nauty, reveal that the presented approach produces a huge contraction of the search space. Such reduction will be shown to be exponential for special classes of graphs which are intractable by nauty.
منابع مشابه
An Integer Programming Model and a Tabu Search Algorithm to Generate α-labeling of Special Classes of Quadratic Graphs
First, an integer programming model is proposed to find an α-labeling for quadratic graphs. Then, a Tabu search algorithm is developed to solve large scale problems. The proposed approach can generate α-labeling for special classes of quadratic graphs, not previously reported in the literature. Then, the main theorem of the paper is presented. We show how a problem in graph theory c...
متن کاملConflict Propagation and Component Recursion for Canonical Labeling
The individualize and refine approach for computing automorphism groups and canonical forms of graphs is studied. Two new search space pruning techniques, conflict propagation based on recorded failure information and recursion over nonuniformly joined components, are presented. Experimental results show that the techniques can result in substantial decrease in both search space sizes and run t...
متن کاملProduct version of reciprocal degree distance of composite graphs
A {it topological index} of a graph is a real number related to the graph; it does not depend on labeling or pictorial representation of a graph. In this paper, we present the upper bounds for the product version of reciprocal degree distance of the tensor product, join and strong product of two graphs in terms of other graph invariants including the Harary index and Zagreb indices.
متن کاملTime and Space Efficient Discovery of Maximal Geometric Graphs
A geometric graph is a labeled graph whose vertices are points in the 2D plane with an isomorphism invariant under geometric transformations such as translation, rotation, and scaling. While Kuramochi and Karypis (ICDM2002) extensively studied the frequent pattern mining problem for geometric subgraphs, the maximal graph mining has not been considered so far. In this paper, we study the maximal...
متن کامل$Z_k$-Magic Labeling of Some Families of Graphs
For any non-trivial abelian group A under addition a graph $G$ is said to be $A$-textit{magic} if there exists a labeling $f:E(G) rightarrow A-{0}$ such that, the vertex labeling $f^+$ defined as $f^+(v) = sum f(uv)$ taken over all edges $uv$ incident at $v$ is a constant. An $A$-textit{magic} graph $G$ is said to be $Z_k$-magic graph if the group $A$ is $Z_k$ the group of integers modulo $k...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- CoRR
دوره abs/0804.4881 شماره
صفحات -
تاریخ انتشار 2008